Cognitive Neuropsychology: An Introduction
What is cognitive neuropsychology?
What is cognitive neuropsychology?

- It is a branch of cognitive psychology
What is cognitive neuropsychology?

• It is a branch of cognitive psychology

• Its aim is to try to learn more about the normal processes of cognition by studying the ways in which particular cognitive processes break down or fail to be acquired normally
Brain damage and cognitive psychology
Brain damage and cognitive psychology

Brain damage can have highly selective effects on cognition—some examples:
Brain damage and cognitive psychology

Brain damage can have highly selective effects on cognition—some examples:

- Patient can’t recognize faces; can still recognize objects
Brain damage and cognitive psychology

Brain damage can have highly selective effects on cognition—some examples:

- Patient can’t recognize faces; can still recognize objects
- Verbs can be spelled, but nouns cannot
Brain damage and cognitive psychology

Brain damage can have highly selective effects on cognition—some examples:

- Patient can’t recognize faces; can still recognize objects
- Verbs can be spelled, but nouns cannot
- Spoken words cannot be understood, but environmental sounds can
Brain damage and cognitive psychology

Brain damage can have highly selective effects on cognition—some examples:

• Patient can’t recognize faces; can still recognize objects
• Verbs can be spelled, but nouns cannot
• Spoken words cannot be understood, but environmental sounds can
• Words referring to manmade objects can be understood; words referring to animate objects can’t.
Brain damage and cognitive psychology

Brain damage can have highly selective effects on cognition—some examples:

- Patient can’t recognize faces; can still recognize objects
- Verbs can be spelled, but nouns cannot
- Spoken words cannot be understood, but environmental sounds can
- Words referring to manmade objects can be understood; words referring to animate objects can’t.
- Nonsense words can be read aloud correctly, but real words cannot (if they are exception words)
Brain damage and cognitive psychology

Brain damage can have highly selective effects on cognition—some examples:

• Patient can’t recognize faces; can still recognize objects
• Verbs can be spelled, but nouns cannot
• Spoken words cannot be understood, but environmental sounds can
• Words referring to manmade objects can be understood; words referring to animate objects can’t.
• Nonsense words can be read aloud correctly, but real words cannot (if they are exception words)
• Patient can attend to right half of space, but not the left
Brain damage and cognitive psychology

Brain damage can have highly selective effects on cognition—some examples:

- Patient can’t recognize faces; can still recognize objects
- Verbs can be spelled, but nouns cannot
- Spoken words cannot be understood, but environmental sounds can
- Words referring to manmade objects can be understood; words referring to animate objects can’t.
- Nonsense words can be read aloud correctly, but real words cannot (if they are exception words)
- Patient can attend to right half of space, but not the left
- Patient can imitate gestures, but not produce them on command
Brain damage and cognitive psychology

Brain damage can have highly selective effects on cognition—some examples:

- Patient can’t recognize faces; can still recognize objects
- Verbs can be spelled, but nouns cannot
- Spoken words cannot be understood, but environmental sounds can
- Words referring to manmade objects can be understood; words referring to animate objects can’t.
- Nonsense words can be read aloud correctly, but real words cannot (if they are exception words)
- Patient can attend to right half of space, but not the left
- Patient can imitate gestures, but not produce them on command

Surely such results must be telling us a lot about cognition?
What is cognitive neuropsychology?

• It is a branch of cognitive psychology

• Its aim is to try to learn more about the normal processes of cognition by studying the ways in which particular cognitive processes break down or fail to be acquired normally

• Despite its name, it is not a branch of neuropsychology
What is cognitive neuropsychology?

• It is a branch of cognitive psychology

• Its aim is to try to learn more about the normal processes of cognition by studying the ways in which particular cognitive processes break down or fail to be acquired normally

• Despite its name, it is not a branch of neuropsychology

• It has its own journal:
What is the difference between cognitive neuropsychology and cognitive neuroscience?
What is the difference between cognitive neuropsychology and cognitive neuroscience?

• Cognitive neuropsychology is all about mental processes. It is a branch of cognitive psychology.
What is the difference between cognitive neuropsychology and cognitive neuroscience?

- **Cognitive neuropsychology** is all about **mental processes**. It is a branch of cognitive psychology.

- **Cognitive neuroscience** is all about **neural processes** (the brain processes which cognition depends on). It is a branch of neuroscience.
What is the difference between cognitive neuropsychology and cognitive neuroscience?

- Cognitive neuropsychology is all about mental processes. It is a branch of cognitive psychology.

- Cognitive neuroscience is all about neural processes (the brain processes which cognition depends on). It is a branch of neuroscience.

- An important distinction, sometimes confused.
What is the difference between cognitive neuropsychology and cognitive neuroscience?

• Cognitive neuropsychology is all about mental processes. It is a branch of cognitive psychology.

• Cognitive neuroscience is all about neural processes (the brain processes which cognition depends on). It is a branch of neuroscience.

• An important distinction, sometimes confused.

• Ask yourself: “Is this piece of research meant to tell me about the mind, or about the brain?”
What is the difference between cognitive neuropsychology and cognitive neuroscience?

• Cognitive neuropsychology is all about mental processes. It is a branch of cognitive psychology.

• Cognitive neuroscience is all about neural processes (the brain processes which cognition depends on). It is a branch of neuroscience.

• An important distinction, sometimes confused.

• Ask yourself: “Is this piece of research meant to tell me about the mind, or about the brain?”

• Both are important things to do: but they are different fields of science.
What is developmental cognitive neuropsychology?
What is developmental cognitive neuropsychology?

Disorders of cognition can arise in two ways:
What is developmental cognitive neuropsychology?

Disorders of cognition can arise in two ways:

• **Acquired** disorders of cognition: here a person had acquired some cognitive ability but then suffered some kind of brain damage which impaired this ability
What is developmental cognitive neuropsychology?

Disorders of cognition can arise in two ways:

• **Acquired** disorders of cognition: here a person had acquired some cognitive ability but then suffered some kind of brain damage which impaired this ability
• **Developmental** disorders of cognition: here the person had never been able to acquire some cognitive ability to a normal level
What is developmental cognitive neuropsychology?

Disorders of cognition can arise in two ways:

• **Acquired** disorders of cognition: here a person had acquired some cognitive ability but then suffered some kind of brain damage which impaired this ability

• **Developmental** disorders of cognition: here the person had never been able to acquire some cognitive ability to a normal level

Developmental cognitive neuropsychology is the study of developmental disorders of cognition as a way of learning more about how specific cognitive abilities are normally acquired by children
What is cognitive-neuropsychological assessment?
What is cognitive-neuropsychological assessment?

This is assessment that is model-based; that is, it is based on some particular modular information-processing model of the domain of cognition that is being assessed.
What is cognitive-neuropsychological assessment?

This is assessment that is model-based; that is, it is based on some particular modular information-processing model of the domain of cognition that is being assessed.

Two examples of such assessment batteries:
What is cognitive-neuropsychological assessment?

This is assessment that is model-based; that is, it is based on some particular modular information-processing model of the domain of cognition that is being assessed.

Two examples of such assessment batteries:

• Language: the PALPA battery (Psycholinguistic Assessments of Language Processing in Aphasia)
What is cognitive-neuropsychological assessment?

This is assessment that is model-based; that is, it is based on some particular modular information-processing model of the domain of cognition that is being assessed.

Two examples of such assessment batteries:

• Language: the PALPA battery (Psycholinguistic Assessments of Language Processing in Aphasia)

• Object recognition: the BORB battery (Birmingham Object Recognition Battery)
What is cognitive neuropsychiatry?
What is cognitive neuropsychiatry?

• It is the investigation of psychiatric conditions from a cognitive-neuropsychological viewpoint, so it is branch of cognitive neuropsychology
What is cognitive neuropsychiatry?

• It is the investigation of psychiatric conditions from a cognitive-neuropsychological viewpoint, so it is branch of cognitive neuropsychology

• The conditions studied include
What is cognitive neuropsychiatry?

• It is the investigation of psychiatric conditions from a cognitive-neuropsychological viewpoint, so it is branch of cognitive neuropsychology

• The conditions studied include
 • Delusion
What is cognitive neuropsychiatry?

• It is the investigation of psychiatric conditions from a cognitive-neuropsychological viewpoint, so it is branch of cognitive neuropsychology

• The conditions studied include
 • Delusion
 • Hallucination
What is cognitive neuropsychiatry?

• It is the investigation of psychiatric conditions from a cognitive-neuropsychological viewpoint, so it is branch of cognitive neuropsychology

• The conditions studied include
 • Delusion
 • Hallucination
 • Confabulation
What is cognitive neuropsychiatry?

• It is the investigation of psychiatric conditions from a cognitive-neuropsychological viewpoint, so it is branch of cognitive neuropsychology

• The conditions studied include
 • Delusion
 • Hallucination
 • Confabulation

• It has its own journal
The basic methods of cognitive neuropsychology.

I will illustrate these by going through a detailed example.
a 26-year-old woman in Scotland, in hospital 11 days after giving birth, complained of numbness in her left arm, and next day was drowsy & unresponsive: almost certainly a stroke.

Bramwell (The Lancet, 1897)
Bramwell (The Lancet, 1897)

a 26-year-old woman in Scotland, in hospital 11 days after giving birth, complained of numbness in her left arm, and next day was drowsy & unresponsive: almost certainly a stroke.

when she recovered alertness, she seemed unable to understand what was said to her.
a 26-year-old woman in Scotland, in hospital 11 days after giving birth, complained of numbness in her left arm, and next day was drowsy & unresponsive: almost certainly a stroke.

when she recovered alertness, she seemed unable to understand what was said to her.

she said to Bramwell: “Is it not strange that I can hear the clock ticking and cannot hear you speak? Now let me think what that means.”
Bramwell (The Lancet, 1897)

- a 26-year-old woman in Scotland, in hospital 11 days after giving birth, complained of numbness in her left arm, and next day was drowsy & unresponsive: almost certainly a stroke.

- when she recovered alertness, she seemed unable to understand what was said to her.

- she said to Bramwell: “Is it not strange that I can hear the clock ticking and cannot hear you speak? Now let me think what that means.”

- Let US think what that means
she can understand environmental sounds such as clocks ticking, but she can’t understand speech. Why?

Bramwell (The Lancet, 1897)
she can understand environmental sounds such as clocks ticking, but she can’t understand speech. Why?

here’s a diagram to help us think about this:
she can understand environmental sounds such as clocks ticking, but she can’t understand speech. Why?

here’s a diagram to help us think about this:
Bramwell (The Lancet, 1897)

She can understand environmental sounds such as clocks ticking, but she can’t understand speech. Why?

Here’s a diagram to help us think about this:

BOX = a cognitive store of information, or a system that processes cognitive representations.
she can understand environmental sounds such as clocks ticking, but she can’t understand speech. Why?

here’s a diagram to help us think about this:

BOX = a cognitive store of information, or a system that processes cognitive representations

ARROW = pathway of communication between cognitive information stores or information processors
Bramwell (The Lancet, 1897)
there is a single system of knowledge about meaning (semantics) used for understanding all kinds of input

Bramwell (The Lancet, 1897)
there is a single system of knowledge about meaning (semantics) used for understanding all kinds of input

even though spoken words and nonspeech sounds are both auditory stimuli, they use different pathways to the semantic system
there is a single system of knowledge about meaning (semantics) used for understanding all kinds of input

even though spoken words and nonspeech sounds are both auditory stimuli, they use different pathways to the semantic system

even though spoken words and printed words are both word stimuli, they use different pathways to the semantic system

Bramwell (The Lancet, 1897)
Bramwell (The Lancet, 1897)
Bramwell (The Lancet, 1897)

but this diagram is inadequate
but this diagram is inadequate

nonspeech sounds and spoken words need to be processed by hearing mechanisms prior to getting to meaning
but this diagram is inadequate

nonspeech sounds and spoken words need to be processed by hearing mechanisms prior to getting to meaning
but this diagram is inadequate

nonspeech sounds and spoken words need to be processed by hearing mechanisms prior to getting to meaning

so processors that do the job of processing auditory stimuli must be added to the diagram
but this diagram is inadequate

nonspeech sounds and spoken words need to be processed by hearing mechanisms prior to getting to meaning

so processors that do the job of processing auditory stimuli must be added to the diagram
Bramwell (The Lancet, 1897)

Diagram:
- All auditory stimuli
- Early Auditory Processing
- Semantic System
- Printed Word
this diagram does not show any communication from Early Auditory Processing to Semantic System
this diagram does not show any communication from Early Auditory Processing to Semantic System.

if there were only one pathway between these two systems how could there be a person who understands environmental sounds but not speech?
Bramwell (The Lancet, 1897)

this diagram does not show any communication from Early Auditory Processing to Semantic System

if there were only one pathway between these two systems how could there be a person who understands environmental sounds but not speech?
this diagram does not show any communication from Early Auditory Processing to Semantic System

if there were only one pathway between these two systems how could there be a person who understands environmental sounds but not speech?

so there must be two pathways here
this diagram does not show any communication from Early Auditory Processing to Semantic System

if there were only one pathway between these two systems how could there be a person who understands environmental sounds but not speech?

so there must be two pathways here
Bramwell (The Lancet, 1897)

This diagram could account for Bramwell’s patient: her brain damage affected the system at point X.
this diagram could account for Bramwell’s patient: her brain damage affected the system at point \(\times \)

but this is not a legal diagram because it does not represent the different forms of processing that nonspeech and speech sounds get before semantics
Bramwell (*The Lancet*, 1897)

This diagram could account for Bramwell’s patient: her brain damage affected the system at point \(X\).

But this is not a legal diagram because it does not represent the different forms of processing that nonspeech and speech sounds get before semantics.
this diagram could account for Bramwell’s patient: her brain damage affected the system at point X

but this is not a legal diagram because it does not represent the different forms of processing that nonspeech and speech sounds get before semantics

this has to be fixed
Bramwell (The Lancet, 1897)

Diagram: Nonspeech sounds and Spoken words are processed by the Early Auditory Processing module. This module outputs two unknown variables, one for nonspeech sounds and one for spoken words, which are then input into the Semantic System. Additionally, Spoken words are processed to Printed words.
this diagram could account for Bramwell’s patient: her brain damage affected the system at point X
this diagram could account for Bramwell’s patient: her brain damage affected the system at point X

but can we say anything about what the processors labelled ? might actually do?
this diagram could account for Bramwell's patient: her brain damage affected the system at point X

but can we say anything about what the processors labelled ? might actually do?

here we need to distinguish between RECOGNITION and COMPREHENSION
Bramwell (The Lancet, 1897)
Bramwell (The Lancet, 1897)

Here we need to distinguish between RECOGNITION and COMPREHENSION.
here we need to distinguish between RECOGNITION and COMPREHENSION.

the processors labelled ? do the job of RECOGNIZING.
here we need to distinguish between RECOGNITION and COMPREHENSION

the processors labelled ? do the job of RECOGNIZING

the Semantic System does the job of COMPREHENDING
a LEXICON is a store of the auditory or visual forms of familiar stimuli
a LEXICON is a store of the auditory or visual forms of familiar stimuli

RECOGNITION = finding an item in a lexicon

Bramwell (The Lancet, 1897)
a LEXICON is a store of the auditory or visual forms of familiar stimuli

RECOGNITION = finding an item in a lexicon

the Semantic System does the job of COMPREHENDING
a LEXICON is a store of the auditory or visual forms of familiar stimuli

RECOGNITION = finding an item in a lexicon

the Semantic System does the job of COMPREHENDING
a LEXICON is a store of the auditory or visual forms of familiar stimuli

RECOGNITION = finding an item in a lexicon

the Semantic System does the job of COMPREHENDING
a LEXICON is a store of the auditory or visual forms of familiar stimuli

RECOGNITION = finding an item in a lexicon

the Semantic System does the job of COMPREHENDING
Bramwell's patient could understand environmental sounds but not speech. Where was her system damaged?
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

Not here (she could understand sounds)
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

Not here (she could understand sounds)
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

Not here (she could understand sounds)

Was it here?

Not here (she could understand sounds)
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

Not here (she could understand sounds)

Was it here?

Or here?

Not here (she could understand sounds)

Bramwell (The Lancet, 1897)
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

Not here (she could understand sounds)

Was it here?

Or here?

Or here?

Not here (she could understand sounds)
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

- Not here (she could understand sounds)
- Was it here?
- Or here?
- Or here?
- Not here (she could understand sounds)
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

Not here (she could understand sounds)

Was it here?

Or here?

Or here?

Not here (she could understand sounds)
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

Not here (she could understand sounds)

Was it here?

Or here?

Or here?

Not here (she could understand sounds)
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

How can we decide?
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

Was it here?

Or here?

Or here?

How can we decide?
Bramwell's patient could understand environmental sounds but not speech. Where was her system damaged?

How can we decide?
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

How can we decide?
Bramwell (The Lancet, 1897)
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

A VERY SUBTLE point: When asked to write to dictation the sentence “Do you like to come to Edinburgh?” she did so correctly. So she must have correctly recognized the spoken words “come” and “Edinburgh”. These are irregular words and could not be correctly spelled unless they were recognized correctly. So . . .
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

A VERY SUBTLE point: When asked to write to dictation the sentence “Do you like to come to Edinburgh?” she did so correctly. So she must have correctly recognized the spoken words “come” and “Edinburgh”. These are irregular words and could not be correctly spelled unless they were recognized correctly. So . . .
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

A VERY SUBTLE point: When asked to write to dictation the sentence “Do you like to come to Edinburgh?” she did so correctly. So she must have correctly recognized the spoken words “come” and “Edinburgh”. These are irregular words and could not be correctly spelled unless they were recognized correctly. So . . .
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

A VERY SUBTLE point: When asked to write to dictation the sentence “Do you like to come to Edinburgh?” she did so correctly. So she must have correctly recognized the spoken words “come” and “Edinburgh”. These are irregular words and could not be correctly spelled unless they were recognized correctly. So . . .
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

Diagram:
- Nonspeech sounds
- Spoken words
 - Early Auditory Processing
 - Sound Input Lexicon
 - Phonological Input Lexicon
 - Printed words
 - Semantic System
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

Not here
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

Not here

Not here
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

Bramwell (The Lancet, 1897)
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged?

So her damage MUST be here
Bramwell's patient could understand environmental sounds but not speech. Where was her system damaged?

Bramwell (The Lancet, 1897)

Not here
Not here
So her damage MUST be here
Bramwell’s patient could understand environmental sounds but not speech. Where was her system damaged? Bramwell (The Lancet, 1897)

- Not here
- Not here
- So her damage MUST be here
Their patient could not understand environmental sounds but could understand spoken words. Where was his damage?

Albert et al., (Cortex, 1972)
Albert et al., (Cortex, 1972)

Their patient could not understand environmental sounds but could understand spoken words. Where was his damage?

Not here (he could understand speech)
Their patient could not understand environmental sounds but could understand spoken words. Where was his damage?

Not here (he could understand speech)

Not here (he could understand speech)
Their patient could not understand environmental sounds but could understand spoken words. Where was his damage?

Not here (he could understand speech)

Must be somewhere here

Not here (he could understand speech)
Albert et al., (Cortex, 1972)

Their patient could not understand environmental sounds but could understand spoken words. Where was his damage?

Not here (he could understand speech)

Must be somewhere here

Not here (he could understand speech)
Albert et al., (Cortex, 1972)

Their patient could not understand environmental sounds but could understand spoken words. Where was his damage?

Not here (he could understand speech)

Must be somewhere here

Not here (he could understand speech)
Their patient could not understand environmental sounds but could understand spoken words. Where was his damage?

Not here (he could understand speech)

Must be somewhere here

Not here (he could understand speech)
What is cognitive neuropsychology?
What is cognitive neuropsychology?

I have illustrated this by beginning with a detailed example. The key concepts in cognitive neuropsychology illustrated by this example are:
What is cognitive neuropsychology?

I have illustrated this by beginning with a detailed example. The key concepts in cognitive neuropsychology illustrated by this example are:

• the focus on investigating symptoms, not syndromes
What is cognitive neuropsychology?

I have illustrated this by beginning with a detailed example. The key concepts in cognitive neuropsychology illustrated by this example are:

- the focus on investigating symptoms, not syndromes
- the single-case-study approach
What is cognitive neuropsychology?

I have illustrated this by beginning with a detailed example. The key concepts in cognitive neuropsychology illustrated by this example are:

- the focus on investigating symptoms, not syndromes
- the single-case-study approach
- associations, dissociations and double dissociations
What is cognitive neuropsychology?

I have illustrated this by beginning with a detailed example. The key concepts in cognitive neuropsychology illustrated by this example are:

- the focus on investigating symptoms, not syndromes
- the single-case-study approach
- associations, dissociations and double dissociations
- modular modelling of cognition
What is cognitive neuropsychology?

I have illustrated this by beginning with a detailed example. The key concepts in cognitive neuropsychology illustrated by this example are:

- the focus on investigating symptoms, not syndromes
- the single-case-study approach
- associations, dissociations and double dissociations
- modular modelling of cognition

Each of these will now be discussed a little further
Characteristic features of cognitive neuropsychology
Characteristic features of cognitive neuropsychology.

- The object of study is not the syndrome but the symptom; why?
Characteristic features of cognitive neuropsychology.

- The object of study is not the syndrome but the symptom: why?

![Diagram showing the relationship between print, letter, visual word, semantic, spoken word production, letter-to-sound rules, and speech.]
Characteristic features of cognitive neuropsychology.

- The object of study is not the syndrome but the symptom: why?
- This is a very simple model of the reading system, with only 13 boxes or arrows
Characteristic features of cognitive neuropsychology.

- The object of study is not the syndrome but the symptom: why?

- This is a very simple model of the reading system, with only 13 boxes or arrows.

- But if brain damage can affect any box or any arrow, there will be $2^{13} - 1 = 4095$ different possible syndromes of acquired dyslexia.
Characteristic features of cognitive neuropsychology.

- The object of study is not the syndrome but the symptom: why?

- This is a very simple model of the reading system, with only 13 boxes or arrows.

- But if brain damage can affect any box or any arrow, there will be $2^{13} - 1 = 4095$ different possible syndromes of acquired dyslexia.

- Aim therefore cannot be to investigate syndromes, because there are too many of them, even with such a simple model.
Characteristic features of cognitive neuropsychology.

- The object of study is not the syndrome but the symptom: why?

- This is a very simple model of the reading system, with only 13 boxes or arrows.

- But if brain damage can affect any box or any arrow, there will be $2^{13} - 1 = 4095$ different possible syndromes of acquired dyslexia.

- Aim instead: to test model by seeing how well it can explain symptoms of patients with acquired reading disorders.
Characteristic features of cognitive neuropsychology.

- Research typically consists of single case studies, not group studies: why?
Characteristic features of cognitive neuropsychology.

- Research typically consists of single case studies, not group studies: why?
- Because patients will almost always be unique: if there are 4095 different possible patterns of acquired dyslexia it is highly unlikely that you will ever come across two patients with the same pattern of reading impairment.
Characteristic features of cognitive neuropsychology.

• Research typically consists of single case studies, not group studies: why?

• Because patients will almost always be unique: if there are 4095 different possible patterns of acquired dyslexia it is highly unlikely that you will ever come across two patients with the same pattern of reading impairment.

• If every patient is different from every other one, it makes no sense to treat any set of patients as a single group and to average results across the group.
Characteristic features of cognitive neuropsychology.

- Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?
Characteristic features of cognitive neuropsychology.

- Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?

- When a patient exhibits two symptoms A and B, this may be because a single cognitive system X is impaired, and this impairment is generating the two symptoms.
Characteristic features of cognitive neuropsychology.

• Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?

• When a patient exhibits two symptoms A and B, this may be because a single cognitive system X is impaired, and this impairment is generating the two symptoms.

• Alternatively, when a patient exhibits two symptoms A and B, this may be because two cognitive systems X and Y are impaired, symptom A coming from impairment of X and symptom B coming from impairment of Y. The reason systems X and Y are both impaired is that the brain regions they depend on are close together, so when one is damaged the other is likely to be.
Characteristic features of cognitive neuropsychology.

- Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?

- When a patient exhibits two symptoms A and B, this may be because a single cognitive system X is impaired, and this impairment is generating the two symptoms.

- Alternatively, when a patient exhibits two symptoms A and B, this may be because two cognitive systems X and Y are impaired, symptom A coming from impairment of X and symptom B coming from impairment of Y. The reason systems X and Y are both impaired is that the brain regions they depend on are close together, so when one is damaged the other is likely to be.

- So associations of symptoms don’t allow strong inferences about cognition to be made.
Characteristic features of cognitive neuropsychology.

- Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?

- Associations of symptoms don’t allow strong inferences about cognition to be made: here’s an example
Characteristic features of cognitive neuropsychology.

- Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?

- Associations of symptoms don’t allow strong inferences about cognition to be made: here’s an example

- Patients with Gerstmann’s syndrome show
 - impaired writing
 - impaired ability to calculate
 - right-left disorientation
 - impaired ability to identify their fingers
Characteristic features of cognitive neuropsychology.

- Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?

- Associations of symptoms don’t allow strong inferences about cognition to be made: here’s an example

- Patients with Gerstmann’s syndrome show
 - impaired writing
 - impaired ability to calculate
 - right-left disorientation
 - impaired ability to identify their fingers

- Does that mean there’s a single cognitive system that is used for writing, calculating, telling left from right and identifying fingers?
Characteristic features of cognitive neuropsychology.

- Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?

- Associations of symptoms don’t allow strong inferences about cognition to be made: here’s an example

- Patients with Gerstmann’s syndrome show
 - impaired writing
 - impaired ability to calculate
 - right-left disorientation
 - impaired ability to identify their fingers

- Does that mean there’s a single cognitive system that is used for writing, calculating, telling left from right and identifying fingers?

- No. There are four different cognitive systems. All located in adjacent regions of left parietal lobe
Characteristic features of cognitive neuropsychology.

- Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?
Characteristic features of cognitive neuropsychology.

• Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?

• When a patient is impaired on task A but normal on task B, can we conclude from this dissociation that the two tasks depend on different cognitive systems?
Characteristic features of cognitive neuropsychology.

- Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?

- When a patient is impaired on task A but normal on task B, can we conclude from this dissociation that the two tasks depend on different cognitive systems?

- No. Instead, it could be that these two tasks depend on the same cognitive system, but task A is harder for the system to perform than task B, and so when the system is partially damaged, task A will suffer but task B can still be done.
Characteristic features of cognitive neuropsychology.

- Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?

- When a patient is impaired on task A but normal on task B, can we conclude from this dissociation that the two tasks depend on different cognitive systems?

- No. Instead, it could be that these two tasks depend on the same cognitive system, but task A is harder for the system to perform than task B, and so when the system is partially damaged, task A will suffer but task B can still be done.

- So single dissociations between symptoms don’t allow strong inferences about cognition to be made.
Characteristic features of cognitive neuropsychology.

- Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?
Characteristic features of cognitive neuropsychology.

- Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?

- Suppose we see a patient X who is impaired on task A but normal on task B
Characteristic features of cognitive neuropsychology.

• Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?

• Suppose we see a patient X who is impaired on task A but normal on task B

• And then we see a patient Y who is normal on task A but impaired on task B
Characteristic features of cognitive neuropsychology.

• Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?

• Suppose we see a patient X who is impaired on task A but normal on task B

• And then we see a patient Y who is normal on task A but impaired on task B

• This is a double dissociation between tasks A and B. It can’t be explained on the basis that there is just one cognitive system responsible for both tasks. It strongly supports any model that says that the two tasks depend on two separate cognitive systems
Characteristic features of cognitive neuropsychology.

- Emphasis on dissociations rather than associations of impairments - and especially double dissociations. Why?

- Suppose we see a patient X who is impaired on task A but normal on task B

- And then we see a patient Y who is normal on task A but impaired on task B

- This is a double dissociation between tasks A and B. It can’t be explained on the basis that there is just one cognitive system responsible for both tasks. It strongly supports any model that says that the two tasks depend on two separate cognitive systems

- So double dissociations between symptoms do allow strong inferences about cognition to be made
Characteristic features of cognitive neuropsychology.

- Models are highly modular. It is assumed that any one module can be impaired by brain damage with all the other modules remaining unimpaired.

- The many remarkably selective impairments of cognition that have been discovered by cognitive neuropsychologists provide powerful evidence that cognitive systems are indeed highly modularized:
 - not only as parts of the mind,
 - but also as regions of the brain
SUMMARY

- Cognitive neuropsychology is a branch of cognitive psychology
SUMMARY

• Cognitive neuropsychology is a branch of cognitive psychology

• It uses data from people with impaired cognition to learn more about the normal processes of cognition
SUMMARY

• Cognitive neuropsychology is a branch of cognitive psychology

• It uses data from people with impaired cognition to learn more about the normal processes of cognition

• Such data typically emphasize double dissociations rather than single dissociations or associations
SUMMARY

- Cognitive neuropsychology is a branch of cognitive psychology.
- It uses data from people with impaired cognition to learn more about the normal processes of cognition.
- Such data typically emphasize double dissociations rather than single dissociations or associations.
- Cognitive-neuropsychological theorizing is highly modular.
SUMMARY

• Cognitive neuropsychology is a branch of cognitive psychology

• It uses data from people with impaired cognition to learn more about the normal processes of cognition

• Such data typically emphasize double dissociations rather than single dissociations or associations

• Cognitive-neuropsychological theorizing is highly modular

• It uses single case studies, not group studies
SUMMARY

• Cognitive neuropsychology is a branch of cognitive psychology

• It uses data from people with impaired cognition to learn more about the normal processes of cognition

• Such data typically emphasize double dissociations rather than single dissociations or associations

• Cognitive-neuropsychological theorizing is highly modular

• It uses single case studies, not group studies

• It focuses on symptoms, not syndromes
SUMMARY

• Cognitive neuropsychology is a branch of cognitive psychology

• It uses data from people with impaired cognition to learn more about the normal processes of cognition

• Such data typically emphasize double dissociations rather than single dissociations or associations

• Cognitive-neuropsychological theorizing is highly modular

• It uses single case studies, not group studies

• It focusses on symptoms, not syndromes

• It has uses in assessment and rehabilitation
Reading List

