Skip to Content

Department of Cognitive Science

Multiple sources underlie ERP indices of task-switching

Sharna Jamadar (sharna.jamadar@newcastle.edu.au)
Alexander Provost (alexander.provost@newcastle.edu.au)
W. Ross Fulham (ross.fulham@newcastle.edu.au)
Patricia T. Michie (pat.michie@newcastle.edu.au)
Frini Karayanidis (frini.karayanidis@newcastle.edu.au)
Centre for Brain & Mental Health Research, University of Newcastle, Callaghan

Abstract

Previous investigations of task-switching have reported that cue-related processes are indexed by a differential switch positivity (D-Pos) and that stimulus-related processes are indexed by a differential switch-negativity (D-Neg). The aim of the current study was to use low resolution electromagnetic tomography to localize the sources of D-Pos and D-Neg. Participants switched randomly between simple tasks and showed an increase in reaction time (RT) for switch relative to repeat trials, i.e., an RT switch cost. ERP waveforms showed a D-Pos in the cue-related interval and a D-Neg in the stimulus-related interval. D-Pos was localized to the superior parietal cortex, supporting arguments that D-Pos is associated with activating task rules during anticipatory reconfiguration. D-Neg was localized to the dorsolateral prefrontal cortex, implicating D-Neg in post-stimulus control.

Citation details for this article:

Jamadar, S., Provost, A., Fulham, W., Michie, P., Karayanidis, F. (2010). Multiple Sources Underlie ERP Indices of Task-Switching. In W. Christensen, E. Schier, and J. Sutton (Eds.), ASCS09: Proceedings of the 9th Conference of the Australasian Society for Cognitive Science (pp. 154-161). Sydney: Macquarie Centre for Cognitive Science.

DOI: 10.5096/ASCS200924
Download the PDF here

References

  1. Allport, A., Styles, E. A., & Hsieh, S. (1994). Shifting intentional set: Exploring the dynamic control of tasks. In C. Umilta & M. Moscovitvh (Eds.), Attention and Performance XV (pp.421-452). Cambridge, MA: MIT Press.
  2. Allport, D. A., & Wylie, G. (2000). Task-switching, stimulus response bindings, and negative priming. In S. Monsell & J. Driver (Eds.), Attention and Performance XVIII (pp. 35-70). Cambridge, MA: MIT Press.
  3. Altmann, E.M. (2004). The preparation effect in task switching: Carryover of SOA. Memory and Cognition, 32, 153-163.
  4. Barch, D.M. (2005). The cognitive neuroscience of schizophrenia. Annual Review of Clinical Psychology, 1, 321-53.
  5. Brass, M., Ullsperger, M., Knoesche, T.R., von Cramon, Y., & Phillips, N. (2005). Who Comes First? The Role of the Prefrontal and Parietal Cortex in Cognitive Control. Journal of Cognitive Neuroscience, 17, 1367–1375
  6. Brass, M., & von Cramon, D. Y. (2004). Decomposing components of task preparation with functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 16, 609-620.
  7. Bunge, S.A., Hazeltine, E., Scanlon, M.D., Rosen, A.C. & Gabrieli, J.D.E (2002). Dissociable contributions of prefrontal and parietal cortices to response selection. NeuroImage, 17, 1562-1571.
  8. Coltheart, M. (2006). What has functional neuroimaging told us about the mind (so far)? Cortex, 42, 323-331
  9. Fulham, W.R. (2005). EEG Display (Version 4.10) [Computer software]. Newcastle, Australia.
  10. Hämäläinen, M.S., & Illmoniemi, R.J., 1994. Interpreting magnetic fields of the brain – minimum norm estimates. Medicine & Bioengineering and Computers, 32, 35-42.
  11. Herrmann, M.J., & Fallgatter, A.J., 2004. Visual oddball paradigm: stability of topographical descriptors and source localization (LORETA) of the P300 component. Journal of Psychophysiology, 18, 1– 12.
  12. Jamadar, S., Hughes, M., Fulham, R., Michie, P.T. & Karayanidis, F. (under review). The spatial and temporal dynamics of anticipatory preparation and response inhibition. NeuroImage.
  13. Jamadar, S., Michie P & Karayanidis, F. (in press). No-go/go and other sequence effects in task-switching modulate response preparedness and repetition priming processes. Psychophysiology.
  14. Jamadar, S., Michie, P.T., & Karayanids, F. (in revision). Compensatory Mechanisms Underlie Intact Task-Switching Performance in Schizophrenia. Neuropsychologia.
  15. Karayanidis, F., Coltheart, M., Michie, P. T., & Murphy, K. (2003). Electrophysiological correlates of anticipatory and post-stimulus components of task-switching. Psychophysiology, 40, 329-348.
  16. Karayanidis, F., Mansfield, E., Galloway, K., Smith, J. Provost, A., & Heathcote, A. (2009). Anticipatory reconfiguration elicited by fully and partially informative cues that validly predict a switch in task. Cognitive, Affective, and Behavioral Neuroscience, 9, 202-215.
  17. Kieffaber, P.D., & Hetrick, W.P. (2005). Event-related potential correlates of task switching and switch costs. Psychophysiology, 42, 56-71.
  18. Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11, 229-235.
  19. Lavric, A., Mizon, G., & Monsell, S. (2008). Neurophysiological signature of effective anticipatory task-set control: a task-switching investigation. European Journal of Neuroscience, 28, 1016-1029.
  20. Logan, G.D., & Bundesen, C. (2003). Clever homunculus: Is there an endogenous act of control in the explicit task-cuing procedure? Journal of Experimental Psychology: Human Perception and Performance, 29, 575-599.
  21. Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology: Learning, Memory and Cognition, 22, 1423-1442.
  22. Miller, E.K., & Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annual Reviews of the Neurosciences, 24, 167-202.
  23. Nicholson, R., Karayanidis, F., Bumak, E., Poboka, D., & Michie, P.T. (2006). ERPs dissociate the effects of switching task sets and task cues. Brain Research, 1095, 107-123.
  24. Nicholson, R., Karayanidis, F., Poboka, D., Heathcote, A., & Michie, P. (2005). Electrophysiological correlates of anticipatory task-switching processes. Psychophysiology, 42, 540-554.
  25. Pascual-Marqui, R.D. (1999). Review of Methods for Solving the EEG Inverse Problem. International Journal of Bioelectromagnetism 1, 75-86.
  26. Pascual-Marqui, R.D., Michel, C.M. & Lehmann, D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychophysiology, 18, 49-65.
  27. Perianez, J.A., Maestu, F., Barcelo, F., Fernandez, A., Amo, C. & Ortiz Alonso, T. (2004). Spatiotemporal brain dynamics during preparatory set shifting: MEG evidence. NeuroImage, 21, 687-695.
  28. Rogers, R. D., & Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal of Experimental Psychology, 124, 207 - 231.
  29. Rubinstein, J. S., Meyer, D. E., & Evans, E. (2001). Executive control of cognitive processes in task switching. Journal of Experimental Psychology: Human Perception and Performance, 27, 763-797.
  30. Rushworth, M. F. S., Passingham, R. E., & Nobre, A. C. (2002). Components of switching intentional set. Journal of Cognitive Neuroscience, 14, 1139-1150.
  31. Rushworth, M. F. S., Passingham, R. E., & Nobre, A. C. (2005). Components of attentional set-switching. Experimental Psychology, 52, 83-98.
  32. Small., D.M., Gitelman, D.R., Gregory, M.D., Nobre, A.C., Parrish, T.B., & Mesulam, M-M. (2003). The posterior cingulate and medial prefrontal cortex mediate the anticipatory allocation of spatial attention. NeuroImage, 18, 633-641.
  33. Talairach, J. & Tournox, P. (1988). Co-planar Stereotaxic Atlas of the Human Brain. New York: Thieme Medical Publishers.
  34. Yeung, N., Nystrom, L.E., Aronson, J.A., & Cohen, J.D. (2006). Between-task competition and cognitive control in task-switching. The Journal of Neuroscience, 26, 1429-1438.

Further Information

Contact Details

Telephone: (02) 9850 9599
Fax : (02) 9850 6059
Email : cogsci@mq.edu.au
Web : www.cogsci.mq.edu.au