Skip to Content

Department of Cognitive Science

Temporal dynamics of masked congruence priming: evidence from reaching trajectories

Jason Friedman (
Matthew Finkbeiner (
Macquarie Centre for Cognitive Science, Macquarie University, Sydney


The masked congruence priming effect (MCE) has proven valuable in the investigation of nonconscious cognitive processes. While previous studies have used reaction time (RT) as the dependent variable, and found no difference between repeated primes (which also appear as targets) and novel primes (which do not appear as targets), this study, which had subjects point to the targets while the hand location is continually sampled, did find significant differences. Arm movements were decomposed into the summation of a number of submovements. The parameters describing these submovements were found to be different between repeated and novel primes. This novel method of analysis may provide an insight into the time course of the decision making process, and describes a feasible mechanism for how perceptual information can be transformed into motor plans at discrete times.

Citation details for this article:

Friedman, J., Finkbeiner, M. (2010). Temporal dynamics of masked congruence priming: evidence from reaching trajectories. In W. Christensen, E. Schier, and J. Sutton (Eds.), ASCS09: Proceedings of the 9th Conference of the Australasian Society for Cognitive Science (pp. 98-105). Sydney: Macquarie Centre for Cognitive Science.

DOI: 10.5096/ASCS200916
Download the PDF here


  1. Coles, M. G. H., Gratton, G., Bashore, T. R., Eriksen, C. W., & Donchin, E. (1985). A psychophysiological investigation of the continuous flow model of human information processing. Journal of Experimental Psychology: Human Perception and Performance, 11, 529-553. doi: 10.1037/0096-1523.11.5.529
  2. Damian, M. F. (2001). Congruity effects evoked by subliminally presented primes: automaticity rather than semantic processing. Journal of Experimental Psychology. Human Perception and Performance, 27(1), 154-165. doi: 10.1037/0096-1523.27.1.154
  3. Dehaene, S., Naccache, L., Le Clec'H, G., Koechlin, E., Mueller, M., Dehaene-Lambertz, G., et al. (1998). Imaging unconscious semantic priming. Nature, 395(6702), 597-600. doi: 10.1038/26967
  4. Eriksen, C. W., & Schultz, D. W. (1979). Information processing in visual search: A continuous flow conception and experimental results. Perception and Psychophysics, 25, 249-263.
  5. Finkbeiner, M., & Caramazza, A. (2008). Modulating the masked congruence priming effect with the hands and the mouth. Journal of Experimental Psychology. Human Perception and Performance, 34(4), 894-918. doi: 10.1037/0096-1523.34.4.894
  6. Finkbeiner, M., & Forster, K. (2008). Attention, intention and domain-specific processing. Trends in Cognitive Sciences, 12(2), 59-64. doi: 10.1016/j.tics.2007.11.003
  7. Finkbeiner, M., Song, J., Nakayama, K., & Caramazza, A. (2008). Engaging the motor system with masked orthographic primes: A kinematic analysis. Visual Cognition, 16(1), 11-22. doi: 10.1080/13506280701203838
  8. Flash, T. & Henis, E. (1991). Arm trajectory modification during reaching towards visual targets. Journal of Cognitive Neuroscience, 3, 220–230. doi: 10.1162/jocn.1991.3.3.220
  9. Flash, T. & Hochner, B. (2005). Motor primitives in vertebrates and invertebrates. Current Opinion in Neurobiology, 15(6), 660–666. doi: 10.1016/j.conb.2005.10.011
  10. Flash, T. & Hogan, N. (1985). The coordination of arm movements: An experimentally confirmed mathematical model. Journal of Neuroscience, 5(7), 1688–1703.
  11. Hanes, D. P. & Schall, J. D. (1996). Neural control of voluntary movement initiation. Science, 274(5286). 427–430. doi: 10.1126/science.274.5286.427
  12. Hofsten, C. V. (1991). Structuring of early reaching movements: A longitudinal study. Journal of Motor Behavior, 23(4), 280–293.
  13. Kouider, S., & Dehaene, S. (2007). Levels of processing during non-conscious perception: a critical review of visual masking. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1481), 857-875.
  14. Krebs, H. I., Aisen, M. L., Volpe, B. T., & Hogan, N. (1999). Quantization of continuous arm movements in humans with brain injury. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4645–4649.
  15. Kunde, W., Kiesel, A., & Hoffmann, J. (2003). Conscious control over the content of unconscious cognition. Cognition, 88(2), 223-242. doi: 10.1016/S0010-0277(03)00023-4
  16. Naccache, L., & Dehaene, S. (2001). Unconscious semantic priming extends to novel unseen stimuli. Cognition, 80(3), 215-229. doi: 10.1016/S0010-0277(00)00139-6
  17. Plamondon, R., Alimi, A., Yergeau, P., & Leclerc, F. (1993). Modelling velocity profiles of rapid movements: a comparative study. Biological Cybernetics, 69(2), 119–128. doi: 10.1007/BF00226195
  18. Ratcliff, R., & McKoon, G. (2008). The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks. Neural Computation, 20(4), 873-922. doi: 10.1162/neco.2008.12-06-420
  19. Rohrer, B. & Hogan, N. (2006). Avoiding spurious submovement decompositions II: a scattershot algorithm. Biological Cybernetics, 94(5), 409–414. doi: 10.1007/s00422-006-0055-y
  20. Song, J., & Nakayama, K. (2008). Target selection in visual search as revealed by movement trajectories. Vision Research, 48(7), 853-861. doi: 10.1016/j.visres.2007.12.015
  21. Song, J. & Nakayama, K. (2009). Hidden cognitive states revealed in choice reaching tasks. Trends in Cognitive Sciences, 13(8):360–366. doi: 10.1016/j.tics.2009.04.009
  22. Spivey, M. J., Grosjean, M., & Knoblich, G. (2005). Continuous attraction toward phonological competitors. Proceedings of the National Academy of Sciences of the United States of America, 102(29), 10393–10398. doi: 10.1073/pnas.0503903102
  23. van der Wel, R. P. R. D., Eder, J. R., Mitchel, A. D., Walsh, M. M., & Rosenbaum, D. A. (2009). Trajectories emerging from discrete versus continuous processing models in phonological competitor tasks: a commentary on Spivey, Grosjean, and Knoblich (2005). Journal of Experimental Psychology. Human Perception and Performance, 35(2), 588–594.
  24. Vorberg, D., Mattler, U., Heinecke, A., Schmidt, T., & Schwarzbach, J. (2003). Different time courses for visual perception and action priming. Proceedings of the National Academy of Sciences of the United States of America, 100(10), 6275–6280. doi: 10.1073/pnas.0931489100

Further Information


Who is Visiting

Contact Details

Telephone: (02) 9850 9599
Fax : (02) 9850 6059
Email :
Web :