Skip to Content

Department of Cognitive Science

Action synchronization with biological motion

Lincoln J. Colling (lincoln.colling@maccs.mq.edu.au)
William F. Thompson (bill.thompson@mq.edu.au)
John Sutton (john.sutton@maccs.mq.edu.au)
Music, Sound and Performance Laboratory and Macquarie Centre for Cognitive Science

Abstract

The ability to predict the actions of other agents is vital for joint action tasks. Recent theory suggests that action predic-tion relies on an emulator system that permits observers to use information about their own motor dynamics to predict the ac-tions of other agents. If this is the case, then predictions for self-generated actions should be more accurate than predictions for other-generated actions. We tested this hypothesis by employing a self/other synchronization paradigm where pre-diction accuracy for recording of self-generated movements was compared with prediction accuracy for other-generated movements. As expected, predictions were more accurate when the observer's movement dynamics matched the move-ment dynamics of the recording. This is consistent with that idea that the observer's movement dynamics influence the predictions they generate

Citation details for this article:

Colling, L., Thompson, W., Sutton, J. (2010). Action syn-chronization with biological motion. In W. Christensen, E. Schier, and J. Sutton (Eds.), ASCS09: Proceedings of the 9th Conference of the Australasian Society for Cognitive Science (pp. 49-56). Sydney: Macquarie Centre for Cogni-tive Science.

DOI: 10.5096/ASCS20098
Download the PDF here

References

  1. Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., et al. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European Journal of Neuroscience, 13, 400-404.
  2. Flach, R., Knoblich, G., & Prinz, W. (2003). Off-line authorship effects in action perception. Brain and Cognition, 53, 503-513. doi: 10.1016/S0278-2626(03)00211-2
  3. Fraisse, P. (1982). Rhythm and tempo. In D. Deutsch (Ed.), The Psychology of Music (pp. 149-180). New York: Academic Press.
  4. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593-609. doi: 10.1093/brain/119.2.593
  5. Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493-501. doi: 10.1016/S1364-6613(98)01262-5
  6. Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and perception. Behavioral and Brain Sciences, 27, 377-396.
  7. Jacob, P. (2008). What do mirror neurons contribute to hu-man social cognition? Mind & Language, 23, 190-223. doi: 10.1111/j.1468-0017.2007.00337.x
  8. Kandel, S., Orliaguet, J. P., & Viviani, P. (2000). Perceptual anticipation in handwriting: The role of implicit motor competence. Perception & Psychophysics, 62, 706-716.
  9. Keller, P. E., Knoblich, G., & Repp, B. H. (2007). Pianists duet better when they play with themselves: On the possi-ble role of action simulation in synchronization. Consciousness and Cognition, 16, 102-111. doi: 10.1016/j.concog.2005.12.004
  10. Knoblich, G., & Flach, R. (2001). Predicting the effects of actions: Interactions of perception and action. Psychological Science, 12, 467-472. doi: 10.1111/1467-9280.00387
  11. Knoblich, G., Seigerschmidt, E., Flach, R., & Prinz, W. (2002). Authorship effects in the prediction of handwriting strokes: Evidence for action simulation during action perception. The Quarterly Journal of Experimental Psychology: Section A, 55, 1027-1046. doi: 10.1080/02724980143000631
  12. Kohler, E., Keysers, C., Umilta, M. A., Fogassi, L., Gallese, V., & Rizzolatti, G. (2002). Hearing sounds, understanding actions: Action representation in mirror neurons. Science, 297, 846-848. doi: 10.1126/science.1070311
  13. Miall, R. C., Weir, D., Wolpert, D., & Stein, J. (1993). Is the cerebellum a smith predictor? Journal of Motor Behavior, 25, 203-216.
  14. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97-113. doi: 10.1016/0028-3932(71)90067-4
  15. Repp, B. H. (2005). Sensorimotor synchronization: a review of the tapping literature. Psychonomic Bulletin & Review, 12, 969-992.
  16. Repp, B. H., & Keller, P. E. (2008). Sensorimotor synchro-nization with adaptively timed sequences. Human Movement Science, 27, 423-456. doi: 10.1016/j.humov.2008.02.016
  17. Tesche, C. D., & Karhu, J. J. (2000). Anticipatory cerebellar responses during somatosensory omission in man. Human Brain Mapping, 9, 119-142. doi: 10.1002/(SICI)1097-0193(200003)9:3<119::AID-HBM2>3.0.CO;2-R
  18. Viviani, P., & Stucchi, N. (1992). Biological movements look uniform: evidence of motor-perceptual interactions. Journal of Experimental Psychology. Human Perception and Performance, 18, 603-623. doi: 10.1037/0096-1523.18.3.603
  19. Viviani, P., & Terzuolo, C. (1982). Trajectory determines movement dynamics. Neuroscience, 7, 431-437. doi: 10.1016/0306-4522(82)90277-9
  20. Wilson, M., & Knoblich, G. (2005). The case for motor in-volvement in perceiving conspecifics. Psychological Bulletin, 131, 460-473. doi: 10.1037/0033-2909.131.3.460
  21. Wolpert, D. M., Miall, R. C., & Kawato, M. (1998). Internal models in the cerebellum. Trends in Cognitive Sciences, 2, 338-347. doi: 10.1016/S1364-6613(98)01221-2